
This project has received funding from the European Union's Horizon 2020 research
and innovation programme under grant agreement No 101016798.

Reinforcing the AI4EU Platform by Advancing Earth
Observation Intelligence, Innovation and Adoption

D4.2: Semantic search and discovery tools

Grant Agreement ID 101016798 Acronym AI4COPERNICUS

Project Title
Reinforcing the AI4EU Platform by Advancing Earth Observation
Intelligence, Innovation and Adoption

Start Date 01/01/2021 Duration 36 Months

Project URL https://ai4copernicus-project.eu/

Contractual due
date

30/6/2022
Actual submission
date

30/6/2022

Nature DEM Dissemination Level PU

Author(s) Manolis Koubarakis, Eleni Tsalapati, Dharmen Punjani, Despina-Athanasia
Pantazi (UoA)

Contributor(s) -

Reviewer(s) Iraklis Klampanos (NCSR-D)

Draf
t V

ers
ion

https://ai4copernicus-project.eu/

D4.2: Semantic search and discovery tools

 Page | 2

Document Revision History (including peer reviewing & quality control)

Version Date Changes Contributor(s)

v0.1 15/03/22 Introduction Despina Pantazi

v1.0 10/06/22
First version (pending review
by EC)

All

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 3

Executive Summary

This deliverable of WP4 (Implementation, customisation, integration and testing) stems from Task

4.3 (Implementation of the semantic catalogue and the semantic search and discovery functionality).

In this deliverable, we present the implementation of the semantic catalogue to enable the semantic

search of the EO knowledge included in the AI4EU resources, the EO data of CREODIAS, and the

bootstrapping services and resources created in WP5. Moreover, we discuss the implementation of

the Question Answering engine EarthQA, which is developed over the CREODIAS SPARQL endpoint.

This engine can be used to retrieve satellite metadata served by the CREODIAS SPARQL endpoint

using simple language, therefore making it easier for less technical users to discover data of interest.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 4

Table of Contents

Introduction 6

Purpose and Scope 6

Approach for Work Package and Relation to other Work Packages and Deliverables 7

Organization of the Deliverable 8

The Semantic Catalogue 9

CREODIAS Semantic Data 9

The Copernicus Ontology 10

The Bootstrapping Services and Resources KG 11

The Implementation of the Question Answering Engine EarthQA 12

Related Work 13

The QA Pipeline 13

Dependency Parse Tree generator 15

Concept Identifier 15

Instance Identifier 15

Spatial relation Identifier 16

Property Identifier 17

Temporal Tagger 18

Product Type Identifier 19

Other Metadata Identifier 21

Query Generator 21

Query Executor 26

Conclusions 27

References 28

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 5

List of Figures

Figure 2.1: The AI4Copernicus architecture…………………………………………………………...9

Figure 2.2: Ontology Overview of the CREODIAS SPARQL Data…………...…………………………10

Figure 2.3: Top-level part of the Copernicus Ontology……………………………………………....11

Figure 2.4: Bootstrapping Services and Resources KG……………………………………………….12

Figure 3.1: Architecture of Implementation of EarthQA……………………………………………..14

Figure 3.2: The dependency parse tree………………………………………………………………15

List of Tables

Table 3.1: Geospatial relation categories and relations……………………………………………...16

Table 3.2: Geospatial relations and their synonyms…………………………………………………16

Table 3.3 : DBpedia property example…………………………………………………………..…...17

Table 3.4: Comparison of HeidelTime and Hawking Date Parser tool……………………………….18

Table 3.5: List of Product type as per Mission……………………………………………………….19

Table 3.6: Query Pattern Templates………………………………………………………………….21

Table 3.7: domain-property-range Table……………………………………………………………..23

List of Terms & Abbreviations

Abbreviation Definition

BSR Bootstrapping Services and Resources

CO Copernicus Ontology
EO Earth Observation

ESA European Space Agency
GRD Ground Range Detection

KG Knowledge Graph

MSI Multispectral Instrument
OGC Open Geospatial Consortium

OWL Web Ontology Language

QA Question Answering

SAR Synthetic Aperture Radar

SLC Single Look Complex
QA Question Answering

RDF Resource Description Framework
W3C World Wide Web Consortium

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 6

1 Introduction

This is the second deliverable of WP4 (Implementation, customisation, integration and testing) and,

more specifically, Task 4.3 (Implementation of the semantic catalogue and the semantic search and

discovery functionality).

1.1 Purpose and Scope

The purpose of this deliverable is to present the implementation of the semantic catalogue we

designed in Task 3.2 (Design of the semantic catalogue and the semantic search and discovery

functionality). The semantic catalogue is developed using Semantic Web technologies, and consists

of the Copernicus ontology, the bootstrapping services and resources knowledge graph and the

CREODIAS SPARQL endpoint ontology. The Question Answering engine EarthQA targets the

CREODIAS SPARQL endpoint. Using EarthQA, a user can retrieve satellite metadata included in the

CREODIAS SPARQL endpoint, by posing a natural language question to the engine. For example, if a

user asks “Find Sentinel-1 GRD images that show airports (and areas around) in Spain.”, EarthQA

would generate the SPARQL Query, as shown below, and by executing this SPARQL query over

CREODIAS SPARQL endpoint return the ID of all the images that are Sentinel-1 GRD images, and also

contain airports in Spain to the user. The returned data is in the RDF format.

SELECT distinct ?title ?geom ?airport {

{

 SERVICE <http://dbpedia.org/sparql>

 {

 SELECT ?airport {

 ?airport a <http://schema.org/Airport> .

 ?airport <http://dbpedia.org/ontology/location>

 <http://dbpedia.org/resource/Spain> .

 }

 }

}

?feature a <http://ws.creodias.eu/metadata/feature> .

?feature <http://ws.creodias.eu/metadata/attribute#mission>

 <http://ws.creodias.eu/metadata/mission/Sentinel-1> .

?feature <http://ws.creodias.eu/metadata/attribute#productType>

 <http://ws.creodias.eu/metadata/productType/GRD> .

?feature <http://ws.creodias.eu/metadata/attribute#title> ?title .

?feature <http://ws.creodias.eu/metadata/attribute#geometry> ?geom

.

?hex <http://ws.creodias.eu/metadata/attribute#feature> ?feature .

?hex <http://ws.creodias.eu/metadata/object/airport> ?airport .

} LIMIT 100

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 7

1.2 Approach for Work Package and Relation to other Work Packages and Deliverables

Work package WP4 (Implementation, customisation, integration and testing) started on M4 and ends

on M24 of the project. It is led by partner CF with the collaboration of partners NCSR-D, UoA, TAS,

ECMWF and UNITN. WP4 demonstrates the usability of the solution by the reference test and the

use cases selected in the open calls (WP6).

WP4 has the following five tasks:

● Task 4.1 Integration of AI4EU platform with CREODIAS/WEKEO (M4-M12, lead: CF,

contributor: TAS). The technical contribution of this task is the configuration of the

environment to accommodate the requirements identified in the WP2.

● Task 4.2 Integration of tools for transformation, querying, interlinking and federating big

linked geospatial data (M4-M12, lead: UoA). The technical contribution of this task is the

integration of the linked data suite, developed by UoA, to the platform.

● Task 4.3 Implementation of the semantic catalogue and the semantic search and discovery

functionality (M4-M12, lead: UoA, contributor: NCSR-D). The technical contribution of this

task is the implementation of the semantic catalogue designed in Task 3.2.

● Task 4.4 Machine learning models for EO (M4-M12, lead: UNITN, contributors: NCSR-D,

ECMWF). The technical contribution of this task is the identification and integration of

different supervised machine learning techniques and models, taking into account the inputs

from WP2.

● Task 4.5 Testing and operation of bootstrapping services (M7-M18, lead: CF, contributors:

NCSR-D, UoA). The technical contribution of this task is the availability of dedicated

environments for the use cases.

The present deliverable D4.2 is the second deliverable of WP4 and contains the contributions of the

project in Task 4.3.

The implementation of the architecture and software components in WP4 are designed in WP3

(Technical position and architecture). WP3 started in M1 and will end on M30. It is led by UoA with

the participation of partners NCSR-D, TAS, CF and UNITN.

The following tasks of WP3 are relevant to WP4:

● Task 3.1 Architecture specification, tools and components (M1-M18, lead: UoA, contributors:

NCSR-D, TAS, CF, UNITN). The technical contribution of this task is the development of the

software architecture of the project with a specific emphasis to interfacing with the AI4EU

platform, CREODIAS and WEkEO.

● Task 3.2 Design of the semantic catalogue and the semantic search and discovery functionality

(M1-M9, lead: UoA, contributor: NCSR-D). The technical contributions of this task are the

development of a question answering engine for discovering Copernicus data, and the

development of the Copernicus Knowledge Graph.

The following deliverable of WP3 is relevant to WP4:

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 8

● D3.1 Architecture, semantics and discoverability report (M18, R, PU, UoA). This deliverable

describes the complete architecture of the cloud environment used. It also provides the

design of the semantic catalogue and the semantic search and discovery functionality of

AI4Copernicus.

1.3 Organization of the Deliverable

The rest of the deliverable is organized as follows. Section 2 describes the components of the

semantic catalogue we developed, while in Section 3 we discuss the implementation of the Question

Answering (QA) engine EarthQA that is developed over the CREODIAS SPARQL endpoint. In Section

4, we provide a summary of this deliverable.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 9

2 The Semantic Catalogue

In this section we discuss the components of the semantic catalogue, as defined in deliverable 3.1.

The purpose of the semantic catalogue is to enable the semantic search of the Earth observation

knowledge. Hence, as described in Section 3, EarthQA targets the semantic catalogue, which contains

all the information we need for the AI4EU and the AI4Copernicus services and resources, and the EO

data of CREODIAS. In particular, it contains the Copernicus Ontology (CO), the Ontology of the

CREODIAS SPARQL endpoint, and the metadata of the bootstrapping services and resources of

AI4Copernicus. In the following sections, we describe each one of these components.

Figure 2.1: The AI4Copernicus architecture

2.1 CREODIAS Semantic Data

CREODIAS data can be queried using either the EO Search API or SPARQL. The EO Search API is backed

by the EO Data Finder which conforms to OpenSearch1 standard. Data sets are organised in so-called

collections, corresponding to various satellites. A query may search for data in all collections, or in

one particular collection only. Queries can be executed as HTTP GET calls, and provide outputs both

in JSON and XML formats. The SPARQL interface is a W3C standard, Linked Data endpoint allowing

RDF data to be retrieved and manipulated, based on the specialised, well-developed, semantic graph

database Allegrograph; this interface is connected to the CREODIAS EO Browser, but can also be

easily used by any third party SPARQL clients. The metadata about the collected data from different

satellites are converted to RDF data using the ontology. The overview of ontology is shown in figure

1 opensearch.org

Draf
t V

ers
ion

http://opensearch.org/

D4.2: Semantic search and discovery tools

 Page | 10

2.2. The SPARQL endpoint can be found at

https://sparql.creodias.eu:20035/#/repositories/creodias/.

Figure 2.2: Ontology Overview of the CREODIAS SPARQL Data

2.2 The Copernicus Ontology

The Copernicus ontology is described in detail in D3.1. The scope of the Copernicus ontology is to

capture general knowledge about Satellite Remote Sensing and its applications, to capture

knowledge about EO datasets as well as about finer-detail geospatial and temporal aspects of the

data. CO is expressed in the W3C Web Ontology Language (OWL)2 and it contains 465 classes and

nearly 1600 axioms (some of them imported from external ontologies). It is openly available3.

The main domains included in CO are listed below.

D1. General knowledge about Satellite Remote Sensing and its applications

D2. Knowledge about EO programmes and specific satellites, e.g. Copernicus and the Sentinels

D3. Knowledge about EO datasets

D4. Geospatial and temporal knowledge

D5. Knowledge about publications on the domain

The top-level part of CO is presented in figure 2.3.

Knowledge for D1-D3 is collected from domain experts, technical documentations (e.g., [VBJ+20]),

ESA and CREODIAS websites, and the documents OGC 17-003r2 [C20], OGC 17-084r1 [C21]. For the

geospatial knowledge we use DBpedia (which is also used from CREODIAS) and for the representation

of the temporal knowledge we use the time ontology4. To represent knowledge about publications

on the domain, the ontology of the Open Research Knowledge Graph [ASV+21] is reused.

2 https://www.w3.org/OWL/
3 http://pyravlos-vm5.di.uoa.gr/CopernicusOntology_BootstrappingKG.zip
4 https://www.w3.org/TR/owl-time/

Draf
t V

ers
ion

https://sparql.creodias.eu:20035/#/repositories/creodias/
https://www.w3.org/OWL/
http://pyravlos-vm5.di.uoa.gr/CopernicusOntology_BootstrappingKG.zip
https://www.w3.org/TR/owl-time/

D4.2: Semantic search and discovery tools

 Page | 11

■
Figure 2.3: Top-level part of the Copernicus Ontology

2.3 The Bootstrapping Services and Resources KG

According to D5.1, the bootstrapping services and resources provided by AI4Copernicus are the

following:

The datasets:

● TimeSen2Crop

● VectorDataOfHumanFeatures

● EnergyDataset

The services:

● Sentinel-1 GRD pre-processing

● Sentinel-1 SLC pre-processing

● Sentinel-2 pre-processing

● Sentinel-1 Change detection – Amplitude Change Detection and Multi-temporal Coherence

● Sentinel-2 Change detection

● Deep Network for pixel-level classification of S2 patches,

● Harmonization of pre-processed Time Series of Sentinel-2 data,

● Long Short-Term Memory Neural Network for Sentinel-2,

● Pre-Trained Long Short-Term Memory for GeoTIFF samples for Agriculture

● Probabilistic downscaling of CAMS air quality model data

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 12

We have created the KG Bootstrapping Services and Resources5 in which the aforementioned

services/datasets and their metadata are described in detail. The KG is mapped to both

AI4Copernicus and AI4EU.

The classification of the datasets and the services in Bootstrapping Services and Resources KG (BSR

KG) is presented in figure 2.4:

Figure 2.4: Top-level part of the Bootstrapping Services and Resources KG

Notice that, although it is not depicted in the graph for visual clarity, the bootstrapping services, such

as bsr:LSTM for S2, are instances of both generic classes (bsr:EO LSTM model, in this case) expressing

the type of service provided, and of the class bsr:AI4CopernicusBootstrappingService. Additionally,

the description, the input and the output of each service is represented formally. Finally, as it is

depicted in figure 2.4, all upper level classes are mapped to the respective classes of the AI4EU

ontology.

3 The Implementation of the Question Answering Engine EarthQA

In this section we will discuss the implementation of EarthQA, the Question Answering (QA) engine,

that is developed over the CREODIAS SPARQL endpoint. The EarthQA engine is developed using the

Qanary methodology [B+16, BKDL17] and the Frankenstein platform [S+18].

5 http://pyravlos-vm5.di.uoa.gr/CopernicusOntology_BootstrappingKG.zip

Draf
t V

ers
ion

http://pyravlos-vm5.di.uoa.gr/CopernicusOntology_BootstrappingKG.zip

D4.2: Semantic search and discovery tools

 Page | 13

3.1 Related Work

There is currently no published work on a question answering engine for satellite data like EarthQA.

H2020 project SnapEarth (https://snapearth.eu/) is developing a search engine for satellite data

called EarthSearch. Currently, there are no publications on EarthSearch on the web site of the project.

EarthSearch is developed by the French company QWANT (https://www.qwant.com/) in

collaboration with other partners of SnapEarth.

In 2019, the European Space Agency published a call for the development of "A New Generation of

Linked Earth Observation Data Search Engine". To the best of our knowledge, no project has been

funded under that call although the call has been visionary and shares many goals with our work on

EarthQA. This year (2022), the Φ-Lab of the European Space Agency published a call for

"Demonstrator precursor Digital Assistant interface for Digital Twin Earth (DTE)" where a question

answering engine is also envisioned.

3.2 The QA Pipeline

Qanary is a lightweight component-based QA methodology for the rapid engineering of QA pipelines

[B+16, BKDL17]. Frankenstein [S+18] is the most recent implementation of the ideas of Qanary; this

makes it an excellent framework for developing reusable QA components and integrating them in QA

pipelines. Frankenstein is built using the Qanary methodology developed by Both et al. [B+16] and

uses standard RDF technology to wrap and integrate existing standalone implementations of state-

of-the-art components that can be useful in a QA system. The Qanary methodology is driven by the

knowledge available for describing the input question and related concepts during the QA process.

Frankenstein uses an extensible and flexible vocabulary [S+16] for data exchange between the

different QA components. This vocabulary establishes an abstraction layer for the communication of

QA components. While integrating components using Frankenstein, all the knowledge associated

with a question and the QA process is stored in a process-independent knowledge base using the

vocabulary. Each component is implemented as an independent micro-service implementing the

same RESTful interface. During the start-up phase of a QA pipeline, a service registry is automatically

called by all components. As all components are following the same service interface and are

registered to a central mediator, they can be easily activated and combined by developers to create

different QA systems.

Thus we take advantage of the Frankenstein framework to create QA components which collectively

implement the QA pipeline reusing the components from GeoQA [P+18] and adding some more

components that build complete QA pipeline over CREODIAS SPARQL endpoint.

The EarthQA pipeline for CREODIAS consist of following components :

● Concept Identifier (reused from GeoQA)

● Instance Identifier (TagMeDisambiguate ,reused from GeoQA)

● Spatial relation Identifier (reused from GeoQA)

● Property Identifier (reused from GeoQA)

Draf
t V

ers
ion

https://snapearth.eu/
https://www.qwant.com/

D4.2: Semantic search and discovery tools

 Page | 14

● Date Identifier (HeidelTime tool)

● ProductType Identifier

● Other Metadata Identifier

● Query Generator (reused from GeoQA)

Figure 3.1: Architecture of Implementation of EarthQA

It is to be noted that components reused from GeoQA have been modified or used as it is per

requirement of task. Now we will give a detailed description of all the components of the EarthQA

pipeline.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 15

3.2.1 Dependency Parse Tree generator

This component carries out part-of-speech tagging and generates a dependency parse tree for the

input question using the Stanford CoreNLP software. The dependency parse tree is produced in

CoNLL-U format [N+16].

Figure 3.2: The dependency parse tree

3.2.2 Concept Identifier

This component is reused from the GeoQA [P+18] and modified as per requirement of the task and

target data. The concept identifier module identifies the types of features specified by the user in the

input question and maps them to the corresponding classes in the DBpedia ontology. We use the

equivalent ontology-oriented term concept for a feature type. For example, if the input question is

“Find Sentinel-1 GRD images that show mountains and areas around in Spain”, then the term

“mountains” is identified as a feature type and mapped to the class dbo:Mountain in the DBpedia

ontology. The matching classes are found using string matching on the labels of the classes (the Java

library function java.util.regex.Pattern.matcher() is used) together with lemmatization from Stanford

CoreNLP and synonyms from Wordnet. The CREODIAS contains limited classes from DBpedia. Thus,

we only disambiguate the identified classes to the following list of classes available on CREODIAS

SPARQL endpoint : Settlement, BodyOfWater, Building, River, Mountain, Sea, NaturalEvent, Volcano,

Region, Country, ProtectedArea, Bridge, Airport, EthnicGroup, Event, Earthquake, Lake, Island,

NaturalPlace, Dam, MountainRange, AdministrativeArea, Glacier, City. In its final stage, the concept

identifier annotates the appropriate node of the dependency parse tree with its results.

3.2.3 Instance Identifier

This component is reused from the GeoQA [P+18]. The next useful information to be identified in an

input question is the features mentioned. These can be e.g., the country Ireland or the city Dublin or

the river Shannon etc. We use the equivalent ontology-oriented term instance(s) for features here.

Once instances are identified, they are mapped to DBpedia resources using the entity recognition

and disambiguation tool TagMeDisambiguate [FS10]. Take the example question “Find time series

(December 2017/2016) of Sentinel-1 images that show the Svartisen glacier in Norway”. The term

“Svartisen glacier” and “Norway” is the identified instance (feature) and it is disambiguated to the

wikipedia link and we get DBpedia resource dbr:Svartisen_Glacier and dbr:Norway by

owl:sameAs link from DBpedia Virtuoso endpoint2. In its final stage, the instance identifier annotates

the appropriate node of the dependency parse tree with its results.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 16

3.2.4 Spatial relation Identifier

This component is reused from the GeoQA [P+18]. Geospatial questions such as the ones targeted by

GeoQA almost always include a qualitative geospatial relation such as ”borders'' or ”within”. The

current implementation supports the 14 geospatial relations shown on table 3.1.

These include some topological, some distance and some cardinal direction relations [EF91, F92,

SK21]. Table 3.2 gives a dictionary of the various synonyms for these relations that can appear instead

of them in a question. The semantics of topological relations are as in the dimensionally extended 9-

intersection model [CF96].

Like the previous modules, this module first identifies geospatial relations in the input question, and

then maps them to a spatial function of the GeoSPARQL vocabulary, or a data property with a spatial

semantics in the DBpedia ontology. As we have already discussed in the introduction, DBpedia

contains limited explicit or implicit geospatial knowledge using latitude/longitude pairs, and

properties such as dbp:northeast for cardinal direction relations or class-specific properties such as

dbo:city (e.g., for class dbr:River). We make use of qualitative geospatial knowledge from DBpedia

expressed using the data properties just mentioned (although this knowledge is rather scarce as

discussed in [RJG16]). As an example, for the question “Find sentinel images containing rivers that

cross London.”, the geospatial relation “crosses” is identified from the verbs in the dependency tree,

and it is mapped to the spatial function geof:sfCrosses of the GeoSPARQL vocabulary.

 Table 3.1: Geospatial relation categories and relations

Category Geospatial Relation

Topological relations “within”,“crosses”,”borders”

Distance relations “near”,“at most x units”, “at least x units”

Cardinal Direction relation “north of”, “ south of”, “east of”, “west of”,
“northwest of”, “northeast of”, “southwest of”,

and “southeast of”

Table 3.2: Geospatial relations and their synonyms

Geospatial
relation

Synonyms in dictionary

 within In, inside, is located in, is included in

crosses Cross, intersect

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 17

near Nearby, close to, around

borders is/are at the border of, is/are at the outskirts of, at the
boundary of

North of Above of

South of below

East of To the right

West of To the left

In its final stage, the geospatial relation identifier annotates the appropriate node of the dependency

parse tree with its results.

3.2.5 Property Identifier

This component is reused from GeoQA [P+21]. The property identifier module identifies attributes of

features specified by the user in input questions and maps them to corresponding properties in

DBpedia. To answer questions like “Find all Sentinel-1 GRD images that show large lakes of an area

greater than 100 sq km”, we need information about the area of lakes. We can retrieve this

information from DBpedia. We use table 3.3 for this task. The identified concept from the concept

identifier module is used to search table 3.3 to get dbp:area in the case of example questions

mentioned before. We stress that table 3.3 contains only examples of classes, properties and values

that are of interest to the example questions. In reality the table contains 33,632 entries and covers

all the listed classes of DBpedia in the section concept identifier. This table has been generated by

querying DBpedia and stored in different files with their class names. We use string similarity

measures while searching table 3.3. In its final stage, the property identifier annotates the

appropriate node of the dependency parse tree with its results.

Table 3.3: DBpedia property example

DBpedia
Class

DBpedia Property Label of
property

dbo:Lake http://dbpedia.org/property/area area

dbo:Lake http://dbpedia.org/property/volume volume

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 18

dbo:Mountain http://dbpedia.org/property/height height

dbo:Mountain http://dbpedia.org/property/elevation elevation

3.2.6 Temporal Tagger

This module identifies temporal keywords and annotates it with appropriate date. For this we have

used the already available temporal tagger/date parser tool. We compared the tools HeidelTime

[SJG15] and Hawking date parser (https://github.com/zoho/hawking) and selected the one which

gives most/all of the correct date from the input question. Both tools are open source and their code

is available on GitHub. In the table below we show the output of the tools for a given input question.

Table 3.4: Comparison of HeidelTime and Hawking Date Parser tool

Question HeidelTime(Rule based) Hawking Date parser(ML

based)

Find Sentinel-1 products

that may show Etna and

areas around it in time of

eruptions in March 2018

<TIMEX3 tid="t4"

type="DATE"

value="2018-03">March

2018</TIMEX3>

Start : 2018-03-

01T00:00:00.000+02:00

End : 2018-04-

01T00:59:59.000+03:00

Find time series

(December 2017/2016)

of Sentinel-1 images that

show Svartisen glacier in

Norway

<TIMEX3 tid="t4"

type="DATE"

value="2017-

12">December

2017</TIMEX3>/

<TIMEX3 tid="t2"

type="DATE"

value="2016">2016</TIM

EX3>

can not find dates

Find Sentinel-3A Water

Full Resolution (WFR)

products with the data

collected in January

2018

<TIMEX3 tid="t3"

type="DATE"

value="2018-01">January

2018</TIMEX3>

Start : 2018-01-

01T00:00:00.000+02:00

End : 2018-01-

31T23:59:59.000+02:00

Find Sentinel images

taken during the summer

months of 2020 which

cover Athens, Greece

and can be used to

<TIMEX3 tid="t2"

type="DATE"

value="XXXX-SU">the

summer</TIMEX3>

<TIMEX3 tid="t1"

Start : 2020-05-

01T01:00:00.000+03:00

End : 2020-07-

01T00:59:59.000+03:00

Draf
t V

ers
ion

https://github.com/zoho/hawking

D4.2: Semantic search and discovery tools

 Page | 19

study oceans. type="DATE"

value="2020">2020</TIM

EX3>

Find Sentinel images

that can be used to

detect burned down

villages in the Rakhine

State of Myanmar during

August and September

2017

<TIMEX3 tid="t5"

type="DATE"

value="2017-

08">August</TIMEX3>

<TIMEX3 tid="t4"

type="DATE"

value="2017-

09">September

2017</TIMEX3>

Start : 2016-08-

01T01:00:00.000+03:00

End : 2016-09-

01T00:59:59.000+03:00

In its final stage, the temporal tagger annotates the appropriate node of the dependency parse tree

with its results.

3.2.7 Product Type Identifier

This component identifies metadata about Mission, Platform and Product type from the input

question. We can tell using product type, that specific product type can be available from a specific

Mission. E.g., Water Full Resolution products are observed through Sentinel-3. The list of product

types, its platform and mission is listed in the table 3.5 below.

Table 3.5: List of Product type as per Mission

Mission Platform Product Type Description of
Product Type

Sentinel-1 S1A GRD Ground Range
Detected

Sentinel-1 S1A SLC Single Look
Complex

Sentinel-1 S1A RAW Raw

Sentinel-1 S1A OCN Ocean

Sentinel-1 S1B GRD Ground Range
Detected

Sentinel-1 S1B SLC Single Look
Complex

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 20

Sentinel-1 S1B RAW Raw

Sentinel-1 S1B OCN Ocean

Sentinel-2 S2A L1C Level-1C

Sentinel-2 S2B L1C Level-1C

Sentinel-3 S3A EFR output during EO
processing mode for
Full Resolution

Sentinel-3 S3A ERR output during EO
processing mode for
Reduced Resolution

Sentinel-3 S3A WFR Water Full
Resolution

Sentinel-3 S3A WRR Water Reduced
Resolution

Sentinel-3 S3A LAN Land Products

Sentinel-3 S3A LFR Land Full Resolution

Sentinel-3 S3A LRR Land Reduced
Resolution

Sentinel-3 S3A LST Land Surface
Temperature

Sentinel-3 S3A RBT Radiance and
Brightness
Temperature

Sentinel-3 S3A SRA --

Sentinel-3 S3A WAT Water Products

Sentinel-3 S3A WST Water Single
Temperature

We first try to find if there exists a product type in the input question. For this we produce n-grams

of the question and find the string similarity using different string similarity methods between these

n-grams and product type listed in table 3.5. We start with 3-grams then bigrams and monograms.

For 3-grams and bigrams we use token based string similarity algorithm Jaccard string similarity score

and for monogram we use edit distance based string similarity algorithm JaroWinkler string similarity.

The threshold used for similarity is 90% for all the cases. We search product types with 3-grams,

bigrams and monograms in order. So if we find some product type with any of the n-gram with at

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 21

least 90% threshold we stop there and select that product type and appropriate Mission. Take the

example question “Find Sentinel-3A Water Full Resolution products with the data collected in January

2018” to understand the process. So here we first generate following 3-grams :

[Find Sentinel-3A Water :: Sentinel-3A Water Full :: Water Full Resolution :: Full Resolution products

:: Resolution products with :: products with the:: with the data :: the data collected :: data collected

in :: collected in January :: in January 2018]

We find string similarity scores and get the “WFR” and Mission Sentinel-3 and platform S3A from the

question that fulfils the condition of threshold above 90% and we stop the process. After getting the

product type and Mission we take monograms and add a platform if the question contains it. If we

do not get any product type mentioned in the input question then we look for the mission and

platform mentioned in the input question. We use Jaro-Winkler string similarity with a 90% threshold.

Thus based on identified product type/ mission/ platform we annotate appropriate nodes of

dependency parse tree with it.

3.2.8 Other Metadata Identifier

This module will identify other metadata about the feature/product like cloud coverage, orbit

direction, processing level, swath etc. We follow a similar method as in the product type identifier

module. In this component we search for the metadata of the image that are as following: Cloud

cover, Orbit direction, Swath, nssdcIdentifier, polarisation, processingFacilitySite, resourceSize,

orbitNumber, processingLevel, processingFacilitySoftwareName, productIdentifier,

processingFacilityName, processingFacilityCountry, resolution, sensorMode, missionTakeid,

organisationName. Take the example question “Find Sentinel-2 MSI products with cloud cover below

10%”. Here we identify cloud cover from the question as metadata of a feature. The appropriate

node of the dependency parse tree is annotated with the identified metadata in the end.

3.2.9 Query Generator

This component is reused from GeoQA [P+18, P+21]. This module takes output generated by all the

previous modules and based on a set of rules generates the SPARQL query that can be executed over

the CREODIAS SPARQL endpoint.

GeoQA identifies a list of question patterns from which we have shown only those that are of interest

to us in table 3.6. In addition to the question pattern that has been identified in GeoQA [P+18, P+21]

we also have considered the pattern “CP” also shown in the table below. In this table C stands for

“concept”, I for “instance” , R for “geospatial relation” , P for “property” following the terminology

we have mentioned above. For each pattern, the table gives an example question and the

corresponding SPARQL query template. The query templates contain slots (strings starting with an

underscore) that can only be identified when an example question is encountered and will be

completed by the query generator, as shown below.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 22

Table 3.6: Query Pattern Templates

Pattern Example Question Template

CRI Mountains of Spain select ?x where {

 ?x rdf:type _Concept.

 ?x _Relation

_Instance.

}

CRIRI Villages in Rakhine State of

Myanmar

select ?x where {

 ?x rdf:type _Concept1.

 ?x _Relation1

_Instance1.

 _Instance1 _Relation2

_Instance2.

}

IRI Svartisen glacier in Norway ask {

_Instance1 _Relation2

_Instance2.

}

CP Lakes with area greater than 100

sq km

select ?x where {

 ?x rdf:type _Concept.

 ?x _Property ?property

}

For each input question, the slots in the template are replaced by the query generator with the

output of the previous modules, to generate a SPARQL query. For example, for the question

“Find Sentinel-1 GRD images from Spain that show mountains and areas around them”, the

identified pattern is CRI. The question pattern is identified by searching the dependency parse

tree in which the nodes have been annotated with the results of the concept, instance,

property and geospatial relation identifier modules presented above. We walk through the

parse tree with inorder traversal and identify the question pattern. If the question does not

follow any of the patterns no query will be generated.

The appropriate templates are selected from table 3.6, their slots are filled with the resources

identified earlier and the corresponding SPARQL query is generated. See example below.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 23

Question : Mountains of Spain
SPARQL :
select ?x where {

 ?x rdf:type dbo:Mountain.

 ?x dbo:Country dbr:Spain.

}

As DBpedia does not contain spatial properties with GeoSPARQL vocabulary the solution is to have

the query generator take into account class and property information from the ontologies of

DBpedia. This is illustrated by the SPARQL query above where we make use of the fact that the

property dbo:country is used in DBpedia to refer to the country containing a mountain. To implement

this strategy we keep a table with three columns which contains triples of the form domain-property-

range for each property in DBpedia. Some example rows can be seen in the table 3.7 below.

Table 3.7: domain-property-range Table

Domain Property Range

Mountain within http://dbpedia.org/ontology/country

Mountain within http://dbpedia.org/ontology/city

River crosses http://dbpedia.org/ontology/Bridge

River crosses http://dbpedia.org/ontology/city

Lake within http://dbpedia.org/ontology/country

Lake within http://dbpedia.org/ontology/city

Just to add the note that GeoQA generates SPARQL as well as GeoSPARQL queries over OSM, GADM

and DBpedia. While for our use we only need the part of the code that generates DBpedia SPARQL

queries and only that has been reused in the component.

Now after checking if the input question contains any of the patterns from table 3.6, we need to add

the triples that have been identified by other modules. In addition to the question pattern we have

template triples for Hex, Mission, date and Other Metadata as well.

The Hex triples. As per the ontology of CREODIAS rdf data all the entities from DBpedia are connected

to spatially indexed Hexagon instances. Thus we need to see if the question is asking for sentinel

images that might contain specific DBpedia entities. If yes we need to add the triples that would get

us instances of images that are connected to the spatially indexed Hex instances that are associated

with DBpedia entities. Thus Hex triples are added if and only if following conditions are satisfied.

1) If any of the question patterns in table 3.6 is identified.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 24

2) If there exists no question pattern from table 3.6 but it contains I(Instance) identified in the

input question.

If condition 1 is satisfied we add generated SPARQL query from pattern and following Hex triples.

?hex <http://ws.eodias.eu/metadata/attribute#feature> ?x .

?hex ?pred ?instance.

Now if condition 2 is satisfied then we add the following triples.

?hex <http://ws.eodias.eu/metadata/attribute#feature> ?x .

?hex ?pred _Instance_ .

For example, “Find Sentinel-1 products that may show Etna and areas around it in time of eruptions

in March 2018.” the following exact triple would be added to the SPARQL query.

?hex <http://ws.eodias.eu/metadata/attribute#feature> ?x .

?hex ?pred <http://dbpedia.org/resource/Mount_Etna> .

The Mission triples. Mission template triples contain the following template.

?x <http://ws.eodias.eu/metadata/attribute#mission> _mission_ .

?x <http://ws.eodias.eu/metadata/attribute#platform> _platform_ .

?x <http://ws.eodias.eu/metadata/attribute#productType>

productType .

Based on the identified Mission, platform and product type from the input question in the product

type identifier module we replace the slots in the above template. We just use the triple for which

the component has been identified only. E.g., “Find all Sentinel-1 GRD images that show large lakes

of an area greater than 100 sq km”. In this question identified components are mission and Product

type and not the platform. Thus following triples would be generated from the above template and

added in the generated SPARQL query.

?x <http://ws.eodias.eu/metadata/attribute#mission>

<http://ws.eodias.eu/metadata/mission/Sentinel-1> .

?x <http://ws.eodias.eu/metadata/attribute#productType>

<http://ws.eodias.eu/metadata/productType/GRD>.

The Other Metadata. Here we add triples for other metadata if it has been identified from the input

question. For this we straight forward add the triples with the property of identified metadata. E.g.

“Find Sentinel-2 MSI products with cloud cover below 10%” , added triple would be following.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 25

?x <http://ws.eodias.eu/metadata/attribute#cloudCover> ?cc .

filter(?cc<10 && ?cc>=0)

The Date triples. Date triple contains the following triple by default.

?x <http://ws.eodias.eu/metadata/attribute#startDate> ?date .

As can be seen in the Temporal tagger module that HeidleTime does not give us start date and end

date as output it just annotates text with the date. Thus we identify the end date and start date from

these dates in our code and add the appropriate triples in the above template. So for example the

question “Find time series (December 2017/2016) of Sentinel-1 images that show Svartisen glacier in

Norway” we would generate the following date triples.

 ?x <http://ws.eodias.eu/metadata/attribute#startDate> ?date .

bind(year(?date) as ?year) . bind(month(?date) as ?month) .

 filter(?year>=2016 && ?year<=2017 && ?month=12) .

After generating all the triples we generate a SPARQL query adding all the generated triples discussed

above. So for the example question “Find Sentinel-1 products that may show Etna and areas around

it in time of eruptions in March 2018” our query generator generates the following SPARQL query.

Generated SPARQL Query :
select distinct ?title ?geom where {

?hex <http://ws.eodias.eu/metadata/attribute#feature> ?x .

?hex ?pred <http://dbpedia.org/resource/Mount_Etna> .

?x a <http://ws.eodias.eu/metadata/feature> .

?x <http://ws.eodias.eu/metadata/attribute#title> ?title .

?x <http://ws.eodias.eu/metadata/attribute#geometry> ?geom .

?x <http://ws.eodias.eu/metadata/attribute#mission>

<http://ws.eodias.eu/metadata/mission/Sentinel-1> .

?x <http://ws.eodias.eu/metadata/attribute#startDate> ?date .

bind(year(?date) as ?year) . bind(month(?date) as ?month) .

filter(?year=2018 && ?month=03) .

} LIMIT 1000

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 26

3.2.10 Query Executor

This module takes the query generated from the query generator and executes it over CREODIAS

SPARQL endpoint. To retrieve the results from the CREODIAS SPARQL endpoint we do HTTP GET

requests at their SPARQL endpoint. The following parameters are used in HTTP GET requests.

query = *SPARQL Query *

queryLn= SPARQL

limit = e.g. 100

Infer = false

returnQueryMetadata = true

It returns SPARQL XML as response and we parse it using Apache Jena Java API. An example HTTP

GET request is the following:

“https://sparql.creodias.eu:30035/repositories/creodias?query=select+distinct+*+where+%7B+%3F

x+%3Fp+%3Fo.%7D+limit+20&queryLn=SPARQL&limit=10&infer=false&returnQueryMetadata=true

”.

Draf
t V

ers
ion

https://sparql.creodias.eu:30035/repositories/creodias?query=select+distinct+*+where+%7B+%3Fx+%3Fp+%3Fo.%7D+limit+20&queryLn=SPARQL&limit=10&infer=false&returnQueryMetadata=true
https://sparql.creodias.eu:30035/repositories/creodias?query=select+distinct+*+where+%7B+%3Fx+%3Fp+%3Fo.%7D+limit+20&queryLn=SPARQL&limit=10&infer=false&returnQueryMetadata=true

D4.2: Semantic search and discovery tools

 Page | 27

4 Conclusions

In this deliverable, we presented the implementation and the components of the semantic catalogue

we designed. Our goal is to use this semantic catalogue to enable the semantic search of the EO

knowledge included in the AI4EU resources, the EO data of CREODIAS, and the bootstrapping services

and resources created in WP5. Moreover, we discussed the implementation of the Question

Answering engine EarthQA, which is developed over the CREODIAS SPARQL endpoint. User-friendly

semantic searching over EO data is expected to provide users with the facility to find the resources

by typing their requirements in natural language.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 28

5 References

[ASV+21] S. Auer, M. Stocker, L. Vogt, G. Fraumann, A. Garatzogianni, ORKG: Facilitating the Transfer

of Research Results with the Open Research Knowledge Graph. Research Ideas and Outcomes 7:

e68513, 2021

[B+16] A. Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, C. Lange, Qanary - A methodology
for vocabulary driven open question answering systems, in: H. Sack, E. Blomqvist, M. d’Aquin, C.
Ghidini, S. P. Ponzetto, C. Lange (Eds.), The Semantic Web. Latest Advances and New Domains - 13th
International Conference, ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceedings,
volume 9678 of Lecture Notes in Computer Science, Springer, 2016, pp. 625–641. URL:
https://doi.org/10.1007/978-3-319-34129-3_38. doi:10. 1007/978-3-319-34129-3_38.

[BKDL17] A. Both, K. Singh, D. Diefenbach, I. Lytra, Rapid engineering of QA systems using the light-
weight qanary architecture, in: J. Cabot, R. D. Virgilio, R. Torlone (Eds.), Web Engineering - 17th
International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Proceedings, volume 10360 of
Lecture Notes in Computer Science, Springer, 2017, pp. 544–548. URL: https://doi.org/10.1007/978-
3-319-60131-1_40. doi:10.1007/978-3-319-60131-1_40.

[C20] Yves Coene. OGC 17-003r2 - Earth Observation Dataset Metadata Vocabulary. Technical report,
2020.

[C21] Y. Coene, U. Voges, O. Barois. OGC EO Collection GeoJSON(-LD) Encoding Best Practice, 2021.

[CF96] E. Clementini, P. D. Felice, A model for representing topological relationships between
complex geometric features in spatial databases, Inf. Sci. 90 (1996) 121–136. URL:
https://doi.org/10.1016/0020-0255(95)00289-8.doi:10.1016/0020-0255(95)00289-8.

[EF91] M. J. Egenhofer, R. D. Franzosa, Point set topological relations, International Journal of
Geographical Information Systems 5 (1991) 161–174. URL:
https://doi.org/10.1080/02693799108927841. doi:10.1080/02693799108927841.

[F92] A. U. Frank, Qualitative spatial reasoning about distances and directions in geographic space, J.
Vis. Lang. Comput. 3 (1992) 343–371. URL: https://doi.org/10.1016/1045-926X(92)90007-9.
doi:10.1016/1045-926X(92)90007-9.

[FS10] P. Ferragina, U. Scaiella, TAGME: on-the-fly annotation of short text fragments (by wikipedia
entities), in: J. Huang, N. Koudas, G. J. F. Jones, X. Wu, K. Collins-Thompson, A. An (Eds.), Proceedings
of the 19th ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto,
Ontario, Canada, October 26- 30, 2010, ACM, 2010, pp. 1625–1628. URL:
https://doi.org/10.1145/1871437.1871689. doi:10.1145/ 1871437.1871689.

[N+16] J. Nivre, M. de Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D. Manning, R. T. McDonald, S.
Petrov, S. Pyysalo, N. Silveira, R. Tsarfaty, D. Zeman, Universal dependencies v1: A multilingual
treebank collection, in: N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J.
Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of the Tenth International
Conference on Language Resources and Evaluation LREC 2016, Portorož, Slovenia, May 23-28, 2016,
European Language Resources Association (ELRA), 2016.

Draf
t V

ers
ion

D4.2: Semantic search and discovery tools

 Page | 29

[P+18] D. Punjani, K. Singh, A. Both, M. Koubarakis, I. Angelidis, K. Bereta, T. Beris, D. Bilidas, T.
Ioannidis, N. Karalis, et al., Template-based question answering over linked geospatial data, in:
Proceedings of the 12th Workshop on Geographic Information Retrieval, 2018, pp. 1–10.

[P+21] Dharmen Punjani, Markos Iliakis, Theodoros Stefou, Kuldeep Singh, Andreas Both, Manolis
Koubarakis, Iosif Angelidis, Konstantina Bereta, Themis Beris, Dimitris Bilidas, Theofilos Ioannidis,
Nikolaos Karalis, Christoph Lange, Despina-Athanasia Pantazi, Christos Papaloukas, Georgios
Stamoulis. “Template-Based Question Answering over Linked Geospatial Data.” CoRR
abs/2007.07060, 2021.

[RJG16] B. Regalia, K. Janowicz, S. Gao, VOLT: A provenance-producing, transparent SPARQL proxy
for the on-demand computation of linked data and its application to spatiotemporally dependent
data, in: H. Sack, E. Blomqvist,M. d’Aquin, C. Ghidini, S. P. Ponzetto, C. Lange (Eds.), The Semantic
Web. Latest Advances and New Domains - 13th International Conference, ESWC 2016, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Proceedings, volume 9678 of Lecture Notes in Computer
Science, Springer, 2016, pp. 523–538. URL: https://doi.org/10.1007/978-3-319-34129-3_32.
doi:10.1007/978-3-319-34129-3_32.

[S+16] K. Singh, A. Both, D. Diefenbach, S. Shekarpour, D. Cherix, C. Lange, Qanary - the fast track to
creating a question answering system with linked data technology, in: H. Sack, G. Rizzo, N. Steinmetz,
D. Mladenic, S. Auer, C. Lange (Eds.), The Semantic Web - ESWC 2016 Satellite Events, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Revised Selected Papers, volume 9989 of Lecture Notes in
Computer Science, 2016, pp. 183–188. URL: https://doi.org/10.1007/978-3-319-47602-5_36.
doi:10.1007/978-3-319-47602-5_36.

[S+18] K. Singh, A. S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas, A.
Khikmatullaev, D. Punjani, C. Lange, M. Vidal, J. Lehmann, S. Auer, Why reinvent the wheel: Let’s
build question answering systems together, in: P. Champin, F. L. Gandon, M. Lalmas, P. G. Ipeirotis
(Eds.), Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon,
France, April 23-27, 2018, ACM, 2018, pp. 1247–1256. URL:
https://doi.org/10.1145/3178876.3186023. doi:10.1145/3178876.3186023.

[SJG15] Strötgen, Jannik, and Michael Gertz. "A baseline temporal tagger for all languages."
Proceedings of the 2015 conference on empirical methods in natural language processing. 2015.

[SK21] S. Skiadopoulos, M. Koubarakis, Composing cardinal direction relations, in: C. S. Jensen, M.
Schneider, B. Seeger, V. J. Tsotras (Eds.), Advances in Spatial and Temporal Databases, 7th
International Symposium, SSTD 2001, Redondo Beach, CA, USA, July 12-15, 2001, Proceedings,
volume 2121 of Lecture Notes in Computer Science, Springer, 2001, pp. 299–320.

[VBJ+20] P. Vincent, M. Bourbigot, H. Johnsen, R. Piantanida, Sentinel-1 Product Specification, Ref:
S1-RS-MDA-52-7441, S-1 MPC Nomenclature: DI-MPC-PB S-1, MPC Reference: MPC-0240, ESA
Unclassified, 2020.

Draf
t V

ers
ion

	1 Introduction
	1.1 Purpose and Scope
	1.2 Approach for Work Package and Relation to other Work Packages and Deliverables
	1.3 Organization of the Deliverable

	2 The Semantic Catalogue
	2.1 CREODIAS Semantic Data
	2.2 The Copernicus Ontology
	■

	2.3 The Bootstrapping Services and Resources KG

	3 The Implementation of the Question Answering Engine EarthQA
	3.1 Related Work
	3.2 The QA Pipeline
	3.2.1 Dependency Parse Tree generator
	3.2.2 Concept Identifier
	3.2.3 Instance Identifier
	3.2.4 Spatial relation Identifier
	3.2.5 Property Identifier
	3.2.6 Temporal Tagger
	3.2.7 Product Type Identifier
	3.2.8 Other Metadata Identifier
	3.2.9 Query Generator
	3.2.10 Query Executor

	4 Conclusions
	5 References

