
EARTHQA: A QUESTION ANSWERING ENGINE FOR EARTH
OBSERVATION DATA ARCHIVES∗

Dharmen Punjani1, Manolis Koubarakis2,3† and Eleni Tsalapati2

1Hubert Curien Laboratory, Université Jean Monnet, St. Etienne, France
dharmen.punjani@gmail.com

2Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

koubarak@di.uoa.gr, etsalapati@gmail.com
3LeibnizAILab, L3S

Leibniz Universität Hannover, Germany

ABSTRACT
EarthQA is a question answering engine that ac-
cepts questions in natural language (English) that
ask for satellite images satisfying certain criteria
and returns links to such datasets, that can be then
downloaded from the CREODIAS cloud platform.
The questions can refer to image metadata (e.g.,
satellite platform, sensing period, cloud cover etc.)
but also to entities from the knowledge graph DB-
pedia (e.g., Mount Etna or the city of Munich). In
this way, the users can ask questions like “Give me
Sentinel-2 satellite images that show Mount Etna,
have been taken in February 2021 and have cloud
cover less than 10%.”

Index Terms— question answering, knowledge
graphs, satellite data archives

1. INTRODUCTION

When Earth Observation (EO) experts or users
query an image archive (e.g., ESA’s Copernicus
Open Access Hub), they typically use a graphical

∗THIS WORK WAS SUPPORTED BY H2020 PROJECT
AI4COPERNICUS (GRANT NO. 101016798), THE HEL-
LENIC FOUNDATION FOR RESEARCH AND INNO-
VATION PROJECT GEOQA (GRANT NO HFRI-FM17-
2351), THE ESA PROJECT DA4DTE (SUBCONTRACT NO.
202320239) AND THE FEDERAL MINISTRY OF EDUCA-
TION AND RESEARCH - GERMANY PROJECT LEIBNIZK-
ILABOR (GRANT NO. 01DD20003).

†Corresponding author.

user interface where they select the geographical
area of the image(s) they are interested in and ad-
ditionally specify some other metadata such as
sensing period, satellite platform, cloud cover etc.
to retrieve the image(s) that satisfy their criteria.
In our work, we are developing the question an-
swering (QA) engine EarthQA that takes as input
a question expressed in natural language (English)
that asks for satellite images satisfying certain cri-
teria and returns links to such datasets, that can
be then downloaded from the CREODIAS cloud
platform.

The version of EarthQA presented in this paper
has been developed in the context of the Hori-
zon 2020 project AI4Copernicus1 and a demo is
available publicly2. A new version of EarthQA is
currently under development in the ESA project
“DA4DTE: Demonstrator Precursor Digital Assis-
tant Interface for Digital Twin Earth”.

2. THE EARTHQA ENGINE

EarthQA has been developed using the Qanary
methodology and the Frankenstein platform [1].
Qanary is a lightweight component-based method-
ology for the rapid engineering of QA pipelines.
Frankenstein is the most recent implementation of
the ideas of Qanary. Thus, we take advantage of the

1https://ai4copernicus-project.eu/
2http://earthqa.di.uoa.gr/

https://ai4copernicus-project.eu/
http://earthqa.di.uoa.gr/

Frankenstein framework to create QA components
which collectively implement the QA pipeline
reusing some components from the geospatial QA
engine GeoQA [2, 3]3 and adding some more com-
ponents that are appropriate for questions targeting
Earth observation data archives.

To answer user questions, EarthQA essen-
tially queries two interlinked knowledge graphs:
a knowledge graph encoding metadata of satel-
lite images from the CREODIAS cloud platform
and the well-known knowledge graph DBpedia
(https://www.dbpedia.org/). The Sen-
tinel missions Sentinel-1, Sentinel-2 and Sentinel-3
are covered. The metadata knowledge graph uses
the ontology of the SPARQL endpoint of CREO-
DIAS4, a subset of which can be seen in Figure 1.

Fig. 1. Part of the ontology used by EarthQA

This ontology contains a class Feature which
represents satellite products. All the metadata of
a product (e.g., mission, instrument or platform)
are encoded as properties of the class Feature.
The class Feature also contains the property
Geometry, which represents the bounding box of
the geographical area corresponding to the satellite
image of the product. The ontology also contains
classes of spatial objects from DBpedia (e.g., City
or Mountain). DBpedia entities (i.e., instances of
DBpedia classes) also have geometries; however,
these are only latitude and longitude coordinates
representing the center of the corresponding areas
in geographic space.5

3https://github.com/AI-team-UoA/GeoQA2
4https://sparql.creodias.eu:30035/#/

repositories/creodias/overview
5It is clear that for some of the DBpedia classes, e.g., River

or City etc., more complex geometries like lines or poly-
gons would be more appropriate. However, DBpedia does not
support them. The more recent geospatial knowledge graph
YAGO2geo [4] will be used in future versions of EarthQA to
alleviate this situation.

Instances of the class Feature (i.e., satel-
lite products) are linked to instances of DBpedia
classes (e.g., the city of Munich or Mount Etna)
using instances of the class Hex. Hex is not a con-
ceptual class representing objects of our domain. It
is rather an implementation class and its instances
are created using the spatial index H3. H3 is a
hexagonal hierarchical spatial index developed by
Uber6 which partitions the surface of the globe into
a hierarchical collection of hexagons. Every spatial
object (e.g., Mount Etna or the geometry of a satel-
lite product) falls into one of these hexagons. Using
the class Hex, an instance of the class Feature
(i.e., a satellite product) is interlinked with all DB-
pedia entities that have geometries that are within
the same H3 hexagon as the geometry of the in-
stance. This interlinking of DBpedia entities with
satellite mission products represented by the class
Feature enables the SPARQL endpoint of CRE-
ODIAS to answer efficiently queries that refer to
both satellite products and DBpedia class instances
(e.g., “Give me Sentinel-2 satellite images that
show Mount Etna that have been taken in February
2021 and have cloud cover less than 10%”).

The architecture of EarthQA is shown in Fig-
ure 2.

Fig. 2. Architecture of the EarthQA implementa-
tion

To get an understanding of how EarthQA
works, we will discuss the processing of the ques-

6https://www.uber.com/en-GR/blog/h3/

https://www.dbpedia.org/
https://github.com/AI-team-UoA/GeoQA2
https://sparql.creodias.eu:30035/#/repositories/creodias/overview
https://sparql.creodias.eu:30035/#/repositories/creodias/overview
https://www.uber.com/en-GR/blog/h3/

tion “Find Sentinel-3A WFR products that covers
islands in France with area greater than 8000 square
kms, with the data collected in January 2018 and
having cloud coverage less than 10%”. EarthQA
processes this question as follows.

Dependency Parse Tree Generator. This
module generates a dependency parse tree of the
input question using the StanfordCoreNLP library.

Instance Identifier. This module identifies and
maps the entity that is present in the input ques-
tion to the appropriate resource of the DBpedia on-
tology. For instance, in the example question, it
will identify entity “France” and map it to dbr:
France in the DBpedia ontology. A sequence of
words in the input question might be identified as
an instance if it has been tagged as a (proper) noun
(POS tags NN, NNS and NNP) during dependency
parsing. The mapping to the DBpedia resource is
done using the named entity recognition and dis-
ambiguation tool TagMeDisambiguate [5].

Concept Identifier. This module identifies and
maps the concept (point of interest) that is present
in the input question to the appropriate resource of
the DBpedia ontology. For instance, in the example
question, it will identify the concept “islands” and
map it to class dbo:Island in the DBpedia ontol-
ogy. The concepts are identified by the elements of
the question that are tagged as nouns (POS tags NN,
NNS, NNP and NNPS) during dependency parsing.
The mapping to the DBpedia class is done using
string matching based on n-grams.

Spatial relation Identifier. This module iden-
tifies spatial relations present in the input question
and maps them to appropriate properties in DB-
pedia. For instance, in the example question, it
will identify the spatial relation “in” and maps it to
dbo:location considering class dbo:Island
and instance dbr:France in the DBpedia ontol-
ogy. Spatial relations are identified based on the
POS tags VB, IN, VP, VBP and VBZ generated
during dependency parsing.

Property Identifier. This module identifies the
attributes of the concept or instance present in the
input question and maps them the appropriate prop-
erties of DBpedia. For instance, in the input ques-
tion, it will identify the attribute “area” and map
it to property dbp:areaKm considering the class
dbo:Island of the DBpedia ontology. The at-

tributes in the input question are identified based
on the POS tags NN, JJ, NNP and NP generated
by the dependency parsing process and the concept-
s/instances identified by earlier steps.

Temporal Tagger. This module identifies tem-
poral keywords in the input question and annotates
them with the appropriate date. For instance, in
the example input question it will identify “January
2018” and map it to “2018-01”. The module uses
the temporal tagger HeidelTime [6].

ProductType Identifier. This module identi-
fies metadata about Mission, Platform and Product
type from the input question. It uses list of all the
available Mission with its platform and associated
product type with mission. N-grams are generated
from the question based on the number of words
present in the product type. If product type is “Wa-
ter Full Resolusion” than 3-grams are generated
from question and string similarity measures are
used to find if question contains product type or
not. For instance, in the example question, it will
identify “Sentinel-3A WFR” and map it to mis-
sion http://ws.eodias.eu/metadata/
mission/Sentinel-3, platform http://
ws.creodias.eu/metadata/platform/
S3A and product type http://ws.eodias.
eu/metadata/productType/WFR of the
CREODIAS ontology.

Other Metadata Identifier. This module iden-
tifies other metadata of the satellite product like
cloud coverage, orbit direction, processing level,
swath etc. For instance, for the input question,
it will identify “cloud coveragre” and map it to
the property creodiasm:cloudCover in the
CREODIAS ontology.

Query Generator. The query generator takes
the output from all the previous modules into
consideration, and based on that, it generates a
SPARQL query corresponding to the input ques-
tion. The query is generated using handcrafted
query templates as in [2]. For the example ques-
tion, it will generate the SPARQL query shown on
the next page (Listing 1).

Query Executor. The query executor runs the
SPARQL query generated by the query generator
over the geospatial RDF store Strabon where the
two knowledge graphs are stored, and returns links
to the satellite products requested in the user ques-

dbr:France
dbr:France
dbo:Island
dbo:location
dbr:France
dbp:areaKm
dbo:Island
http://ws.eodias.eu/metadata/mission/Sentinel-3
http://ws.eodias.eu/metadata/mission/Sentinel-3
http://ws.creodias.eu/metadata/platform/S3A
http://ws.creodias.eu/metadata/platform/S3A
http://ws.creodias.eu/metadata/platform/S3A
http://ws.eodias.eu/metadata/productType/WFR
http://ws.eodias.eu/metadata/productType/WFR
creodiasm:cloudCover

tion. The user of EarthQA can then use these links
to download the relevant products from the CREO-
DIAS platform.

Listing 1. The Generated SPARQL query for the
example question
PREFIX dbo : <h t t p : / / d b p e d i a . o rg / o n t o l o g y/>
PREFIX dbr : <h t t p : / / d b p e d i a . o rg / r e s o u r c e />
PREFIX dbp : <h t t p : / / d b p e d i a . o rg / p r o p e r t y />
PREFIX c r e o d i a s m : <h t t p : / / ws . c r e o d i a s . eu / m e t a d a t a / a t t r i b u t e#>
s e l e c t d i s t i n c t ? t i t l e ?geom
where {

? hex ? p red ? d b p e d i a e n t .
? hex <h t t p : / / ws . c r e o d i a s . eu / m e t a d a t a / a t t r i b u t e # f e a t u r e> ? x .
SERVICE <h t t p s : / / d b p e d i a . o rg / s p a r q l>

{
? d b p e d i a e n t a dbo : I s l a n d ;

? p1 dbr : F r an c e ;
dbp : areaKm ? p r o p e r t y .

FILTER (? p r o p e r t y > 8000) .
}

? x c r e o d i a s m : t i t l e ? t i t l e .
? x c r e o d i a s m : geomet ry ?geom .
? x c r e o d i a s m : m i s s i o n <h t t p : / / ws . c r e o d i a s . eu / m e t a d a t a / m i s s i o n /

S e n t i n e l −3> .
? x c r e o d i a s m : p l a t f o r m <h t t p : / / ws . c r e o d i a s . eu / m e t a d a t a / p l a t f o r m / S3A

>.
? x c r e o d i a s m : p roduc tType <h t t p : / / ws . c r e o d i a s . eu / m e t a d a t a /

p roduc tType /WFR> .
? x c r e o d i a s m : c loudCover ? cc .
? x c r e o d i a s m : s t a r t D a t e ? d a t e .
f i l t e r (? cc<10) .
b ind (y e a r (? d a t e) a s ? y e a r) .
b ind (month (? d a t e) a s ? month) .
FILTER (? y e a r =2018 && ? month =01) .

}LIMIT 100

3. CONCLUSIONS AND FUTURE WORK

Although it can be argued that the current function-
ality of EarthQA discussed above is equivalent to
what is offered by current graphical user interfaces
such as the one for the Copernicus Open Access
Hub, our long-term vision is to develop an engine
that could also be used by non-experts interested
in EO data. In the extended engine users will be
able to ask questions like “I am interested in high
resolution satellite imagery, taken during the sum-
mer of 2022, over cities in Italy with more than one
million residents, that can be used to map green ur-
ban areas”. In this engine, searching for a satellite
image will be as easy as searching for any other
piece of information on the Web today. This vision
of opening up satellite image archives and making
their contents available to expert and non-expert
users alike has been the goal of our group since
2010 with work on pioneer projects TELEIOS [7],
LEO [8, 9] and ExtremeEarth [10, 11]. Another
important direction of our research is to experiment
with deep neural networks and large language mod-
els in the various stages of the EarthQA pipeline
with the hope of making it more effective.

4. REFERENCES

[1] K. Singh et al., “Why reinvent the wheel:
Let’s build question answering systems to-
gether,” in WWW, 2018.

[2] D. Punjani et al., “Template-based question
answering over linked geospatial data,” in
Geographic Information Retrieval (GIR 2018)
workshop. Collocated with ACM SIGSPA-
TIAL, 2018.

[3] D. Punjani et al., “Template-based ques-
tion answering over linked geospatial data,”
CoRR, 2020, Available at https://
arxiv.org/abs/2007.07060.

[4] N. Karalis, G. M. Mandilaras, and
M. Koubarakis, “Extending the YAGO2
knowledge graph with precise geospatial
knowledge,” in ISWC, 2019.

[5] P. Ferragina and U. Scaiella, “TAGME: on-
the-fly annotation of short text fragments (by
wikipedia entities),” in CIKM, 2010.

[6] J. Strötgen and M. Gertz, “HeidelTime:
High quality rule-based extraction and nor-
malization of temporal expressions,” in Se-
mEval@ACL, 2010.

[7] M. Koubarakis, C. Kontoes, and S. Manegold,
“Real-time wildfire monitoring using scien-
tific database and linked data technologies,” in
EDBT, 2013.

[8] S. Burgstaller et al., “LEOpatra: A mobile
application for smart fertilization based on
linked data,” in HAICTA, 2017.

[9] M. Koubarakis et al., “Managing big, linked,
and open Earth observation data: Using the
TELEIOS/LEO software stack,” IEEE Geo-
science and Remote Sensing Magazine, vol. 4,
no. 3, 2016.

[10] M. Koubarakis et al., “From Copernicus big
data to Extreme Earth analytics,” in EDBT,
2019.

[11] F. Appel et al., “ExtremeEarth: Managing wa-
ter availability for crops using Earth observa-
tion and machine learning,” in EDBT, 2023.

https://arxiv.org/abs/2007.07060
https://arxiv.org/abs/2007.07060

	 Introduction
	 The EarthQA Engine
	 Conclusions and future work
	 References

